
PyconCZ 2019 Serverless Slack bot

Jun 15, 2019

Preparation

1 Project overview 1

2 Basic setup 3

3 Slack setup 5
3.1 Slack app . 5

4 Serverless.js 7
4.1 serverless.yml . 7

5 Slack messages 11

6 Sending questions 13

7 Flask app - processing Slack requests 17
7.1 Flask app . 17

8 Meeting Report 27
8.1 Sending one report . 27
8.2 All reports . 28
8.3 Send report . 28

9 Final deployment 29
9.1 Enabling Slack Interactive Components . 29
9.2 Local invocation . 30

10 AWS CloudWatch 33
10.1 CloudWatch Logs . 33
10.2 CloudWatch Events . 33

11 AWS Lambda 35
11.1 Function as a service (FAAS) . 35
11.2 Handler . 35
11.3 Technical details . 36

12 How to set environment variables 37
12.1 Mac/Linux (Bash) . 37
12.2 Windows . 37

i

13 Iam Role 39

ii

CHAPTER 1

Project overview

We are going to build a serverless Slack application to simulate daily standup meeting.

How is it going to work?

1. Application will be installed to our team’s SLACK_CHANNEL

2. At time event (eg 8:30) (Time to ask questions) - application will send Direct Messages to the users and collect
the responses.

3. At time event (eg. 10:00) (Time to send report) - application collects data from the database and send it back to
the SLACK_CHANNEL

You can also look at the schema via draw.io

Users will interact with our app via Slack.

1. User receives a menu into direct message (private message)

2. Click on Open Dialog button opens a dialog with questions

1

https://drive.google.com/file/d/10-liPD58fXncBFwLysIvQvj-cj05S9xK/view?usp=sharing

PyconCZ 2019 Serverless Slack bot

3. Application notifies user when dialog is successfully sent

4. Send a report after a given time

2 Chapter 1. Project overview

CHAPTER 2

Basic setup

First we need to prepare our environment.

You will need:

• A terminal program (Powershell, xterm, etc. . .) and a directory (sls_workshop).

• Installed python3.6 or newer, nodejs with npm.

• AWS IAM user name (PyconCZ 2019 will receive this before the workshop)

This tutorial will make the best effort to support powershell on windows and any terminal with bash on
Linux/Mac. If you are using git bash on windows you should be able to follow steps for Linux/Mac

1. Open your terminal

2. Create a project directory: mkdir sls_workshop

3. Change your current working directory to one we just created: cd sls_workshop

4. Create a virtual environment python -m venv slsenv

5. Activate virtual environment

• Linux/Mac: . slsenv/bin/activate

• Windows: . .\slsenv\Scripts\activate.ps1

6. Install following tools with pip: pip install cookiecutter awscli

7. Use cookiecutter to get server less app template cookiecutter https://gitlab.com/
jans-workshops/pyconcz-2019-slack-bot-template.git

8. Enter your AWS IAM user name and press enter.

Cookie cutter will create a new directory with our serverless app.

sls_app/
example-data

apigw-block_action.json
block_action.json

(continues on next page)

3

https://www.python.org/downloads/
https://nodejs.org/
https://www.npmjs.com

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

cwe-cron.json
cwe-questions.json
cwe-report.json
dialog_submission.json
sample_dialog.json
verification.json

requirements.txt
serverless.yml
standup_bot

__init__.py
action_app.py
config.py
models.py
msg_templates.py
scheduled.py

• serverless.yml - configuration file for serverless.js framework, which describes our deployment

• example-data/ - directory contains examples of data structures we deal with - good reference once you are
comfortable with theory behind it.

• standup_bot - python module representing our application

• standup_bot/action_app.py - Flask application processing responses from Slack deployed as
slack-responses AWS Lambda function

• standup_bot/config.py - contains some configuration used by both lambda functions

• standup_bot/models.py - contains our database models

• standup_bot/msg_templates.py - contains slack message blocks and templates (JSON objects)

• standup_bot/scheduled.py - contains logic for scheduled events to send menu or report

Now you are ready to start building the Serverless Slack bot.

Your next step is to set up a Slack

4 Chapter 2. Basic setup

https://api.slack.com/block-kit

CHAPTER 3

Slack setup

We will be using Slack web client via your favorite web browser.

1. Join our Slack workspace slspyconcz2019 or invite yourself

2. Create a channel iam_username-team

3. Make a note with your CHANNEL_ID from your channel’s url https://slspyconcz2019.slack.com/
messages/<CHANNEL_ID>/

3.1 Slack app

1. Go to https://api.slack.com/apps

2. Click Create New App

3. Fill in appName (to keep it simple: iam_username-bot and select workspace slspyconcz2019
workspace

4. Click Features:Bot Users -> Add a Bot User, keep default values -> click green Add a Bot User

5. Go to oAuth & Permissions -> Install app to Workspace -> Authorize (this generates Bot
Token)

Keep the Bot Token handy as you will need it later.

Now basic slack setup is finished, continue to set up the serverless framework

5

https://join.slack.com/t/slspyconcz2019/shared_invite/enQtNjMyOTk3NTU2NDM4LTU3ZTZhYmY1MTkxZWEyMGY4OTc2YjgyZTkxMjZkNDlmMmNlZGYyMzAzMDM5Yzk0MjYzYTgyZmM2NDhhMTZmOGE
https://api.slack.com/apps

PyconCZ 2019 Serverless Slack bot

6 Chapter 3. Slack setup

CHAPTER 4

Serverless.js

If you did not install before then install serverless.js framework:

npm install -g serverless

You should have finished basic slack setup and have your AWS credentials.

1. In your terminal go to the sls_app directory you created before: cd sls_app.

2. Install python requirements plugin: sls plugin install -n serverless-python-requirements

3. Install AWS pseudo parameters plugin sls plugin install -n
serverless-pseudo-parameters

4. Set environment variables in your terminal (in case you do not know how, check How to set environment vari-
ables section:

AWS_ACCESS_KEY_ID=<your key ID>
AWS_SECRET_ACCESS_KEY=<your secret key>
AWS_REGION=eu-west-1
AWS_DEFAULT_REGION=eu-west-1
SLACK_TOKEN=<your BOT token>
SLACK_CHANNEL="<your slack channel ID>"

4.1 serverless.yml

We are going to briefly describe serverless.yml file, please visit official page with full description. Most common
feature used in our serverless.yml is dynamic variable replacement (reference). Example syntax of variables:

yamlKeyXYZ: ${variableSource}
this is an example of providing a default value as the second parameter
otherYamlKey: ${variableSource, defaultValue}

There are many variable sources, please see the official documentation for more details.

7

https://serverless.com
https://serverless.com/framework/docs/providers/aws/guide/serverless.yml/
https://serverless.com/framework/docs/providers/aws/guide/variables/

PyconCZ 2019 Serverless Slack bot

This file describes our environment (cloud provider), runtime, functions, plugins, other cloud resources and the final
package.

Listing 1: serverless.yml

1 service: user2
2

3 provider:
4 name: aws
5 runtime: python3.7
6 region: eu-west-1
7 tags:
8 user: user2
9 environment: # global environment variables available to all functions within the

→˓service
10 SLACK_CHANNEL: ${env:SLACK_CHANNEL}
11 SLACK_TOKEN: ${env:SLACK_TOKEN}
12 DYNAMODB_TABLE: ${self:service}
13 iamManagedPolicies:
14 - "arn:aws:iam::#{AWS::AccountId}:policy/${self:service}-serverless-workshop-

→˓policy"

• service - Provides a namespace for our project

• provider - Is the environment where are we going to deploy our application (in our case it’s AWS). Some
attributes can be set at different scopes service, provider, function. Everything we set within
provider scope is common for all functions.

• provider.iamManagedPolicies - IAM service role with permissions our functions require to run.

Note: if you are using this lab on your own account, you will need to define your own role similar to
this one

Listing 2: serverless.yml

16 package:
17 exclude:
18 - node_modules/**
19 - tests/**

• package - final zip file uploaded to S3 and deployed to AWS Lambda

Listing 3: serverless.yml

21 functions:
22 # Lambda function with Flask application to handle Slack communication
23 slack-responses:
24 handler: wsgi_handler.handler
25 events:
26 - http:
27 path: actions
28 method: post
29 # Lambda function triggered by CloudWatch events
30 scheduled-events:
31 handler: standup_bot/scheduled.lambda_handler
32 events:
33 - schedule:
34 description: 'Send questions'
35 # rate: cron(0 8 ? * MON-FRI *) # Mo-Fri 8:00

(continues on next page)

8 Chapter 4. Serverless.js

https://serverless.com/framework/docs/providers/aws/guide/services/
https://serverless.com/framework/docs/providers/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

36 rate: rate(5 minutes) # For testing
37 enabled: false
38 inputTransformer:
39 inputPathsMap:
40 eventTime: "$.time"
41 source: "$.source"
42 inputTemplate: '{"source": <source>,"time": <eventTime>,"type": "send_

→˓questions"}'
43 - schedule:
44 description: 'Send report.'
45 # rate: cron(0 10 ? * MON-FRI *) # Mo-Fri 10:00
46 rate: rate(5 minutes) # For testing
47 enabled: false
48 inputTransformer:
49 inputPathsMap:
50 eventTime: "$.time"
51 source: "$.source"
52 inputTemplate: '{"source": <source>,"time": <eventTime>,"type": "send_

→˓report"}'

• functions - Properties and settings for AWS Lambda functions.

• functions.<fn-name>.handler - Path to python module containing lambda_handler function

• functions.<fn-name>.events - AWS Lambda function triggers

Listing 4: serverless.yml

55 plugins:
56 - serverless-python-requirements
57 - serverless-pseudo-parameters
58 - serverless-wsgi

• plugins - Serverless.js plugins (some are installed automatically, others must be installed with sls plugin
install -n <plugin-name>

Listing 5: serverless.yml

61 custom:
62 wsgi:
63 app: standup_bot.action_app.app
64 pythonBin: python3
65 pythonRequirements:
66 slim: true
67 slimPatternsAppendDefaults: true
68 slimPatterns:
69 - "**/*.egg-info*"
70 - "**/*.dist-info*"

• custom - Custom variables, which can be referenced as ${self:custom.<variableName>}

Listing 6: serverless.yml

73 resources:
74 Resources:
75 StandupDynamoDbTable:
76 Type: 'AWS::DynamoDB::Table'

(continues on next page)

4.1. serverless.yml 9

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

77 DeletionPolicy: Retain
78 Properties:
79 AttributeDefinitions:
80 - AttributeName: report_id
81 AttributeType: S
82 - AttributeName: report_user_id
83 AttributeType: S
84 KeySchema:
85 - AttributeName: report_id
86 KeyType: HASH
87 - AttributeName: report_user_id
88 KeyType: RANGE
89 ProvisionedThroughput:
90 ReadCapacityUnits: 1
91 WriteCapacityUnits: 1
92 TableName: ${self:provider.environment.DYNAMODB_TABLE}

• resources - definition of additional AWS CloudFormation resources (serverless.js docs, aws CloudFormation
docs)

10 Chapter 4. Serverless.js

https://serverless.com/framework/docs/providers/aws/guide/resources/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

CHAPTER 5

Slack messages

Before we start coding let’s find out how Slack is composing the message. You can always refer to official documen-
tation.

We are only going to cover parts we will use through out the guide, plase refer to full message documentation if
needed.

Slack message is a simple JSON object.

{
"text": "A message text",
"blocks": [],
"mrkdwn": true

}

Field Type Required? Description
text String Yes Text of the message usually used inside notification popups. (not required when using blocks)
blocks Array No An array of layout blocks, in the same format as described in the layout block guide

We are going to use a new Slack feature blocks to compose our messages.

Our main block components will be Section Block which is similar to the message. And Action blocks is used for
interactive components like buttons and menus. Most important block attributes to understand are: type, block_id,
fields and elements. Please go to the documentation and try it out using a block-kit-builder.

There are other Slack objects we are going to deal with

11

https://api.slack.com/messaging/managing#message
https://api.slack.com/messaging/managing#message
https://api.slack.com/reference/messaging/payload
https://api.slack.com/reference/messaging/blocks
https://api.slack.com/reference/messaging/blocks#section
https://api.slack.com/reference/messaging/blocks#actions
https://api.slack.com/tools/block-kit-builder

PyconCZ 2019 Serverless Slack bot

12 Chapter 5. Slack messages

CHAPTER 6

Sending questions

Let’s write our first part of 1 of ours AWS Lambda functions. Now we are going to work with standup_bot/
scheduled.py file which represents AWS Lambda function shecudeld-events from schema

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 """
4 Standalone lambda function triggered by CWE.
5 """
6 import datetime as dt
7 import json
8 import logging
9

10 from slack import WebClient
11

12 from standup_bot.config import (
13 SLACK_TOKEN,
14 SLACK_CHANNEL,
15 QUESTIONS,
16)
17 from standup_bot.models import Report
18 from standup_bot.msg_templates import standup_menu_block, report_block
19

20 LOGGER = logging.getLogger(__name__)
21 LOGGER.setLevel(logging.INFO)
22

23 # synchronous slack client
24 SC = WebClient(SLACK_TOKEN)

In highlighted lines above, we:

• import the functionality needed later,

• initialize logging

• initialize Slack client - note that we are using synchronous client in order to keep the code beginner
friendly. However you it is possible to make the function async using asyncio and asynchronous slack client.

13

https://docs.python.org/3/library/asyncio.html
https://github.com/slackapi/python-slackclient/blob/master/documentation_v2/examples/asyncio.md

PyconCZ 2019 Serverless Slack bot

Let’s jump to the very bottom of the file and look at our lambda_handler.

We will pay more attention to 28-83 bit later.

88 def lambda_handler(lambda_event, lambda_context):
89 """Main lambda handler"""
90 LOGGER.debug(lambda_context)
91 LOGGER.info(lambda_event)
92 LOGGER.info("lambda_event starts:")
93 LOGGER.info(json.dumps(lambda_event))
94

95 # is it our CWE event?
96 if {"type", "time", "source"}.issubset(lambda_event):
97

98 report_id = dt.datetime.strptime(lambda_event["time"], '%Y-%m-%dT%H:%M:%S%z').
→˓strftime("%Y%m%d")

99 LOGGER.info("Report ID: %s", report_id)
100 if lambda_event["type"] == "send_report":
101 send_report(report_id)
102 elif lambda_event["type"] == "send_questions":
103 send_questions(report_id)

Event source (trigger) of our lambda function will be modified input from a cloudwatch event. We are going to deal
with two event types send_questions and send_report.

Code breakdown:

• L90-93 - Logging of input, so we can investigate what is going on via CloudWatch Logs.

• L98 - generate report_id in format YYYYMMDD

• Then trigger entry point function based on event type

We are going to start with Sending a daily menu to the members of our SLACK_CHANNEL. Implement functions:
send_menu, send_menus and send_questions.

To send a menu to the user via private message, we need to first open the conversation, then we can send a message.
Main body of our message will be a menu_block, which consists of 2 buttons. Where 1 button opens a dialog
with questions and second button allows user to skip todays report.

28 def send_menu(user_id, menu_block):
29 """Send menu as private message to the user."""
30

31 response = SC.conversations_open(users=[user_id])
32 post_response = SC.chat_postMessage(
33 channel=response["channel"]["id"], text="Daily menu", blocks=menu_block
34),
35 return user_id, post_response

On line 33 we are using pre-built layout block from standup_bot/msg_templates.

In function send_menus we ask slack to get a list of channel members and send_menu to each member.

38 def send_menus(menu_block):
39 """Send menu to all users from the channel."""

(continues on next page)

14 Chapter 6. Sending questions

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

40 members = SC.conversations_members(channel=SLACK_CHANNEL)
41 for user_id in members['members']:
42 yield send_menu(user_id, menu_block)

As a last step we define our entry-point function send_questions. Where we generate menu_block part of the
slack message and gather the delivery status responses.

45 def send_questions(report_id):
46 """Entry point for daily menu."""
47 menu_block = standup_menu_block(report_id)
48 results = list(send_menus(menu_block))
49 LOGGER.info(results)

Our menu_block is a function which generates message blocks

Listing 1: msg_templates.standup_menu_block

34 def standup_menu_block(report_id):
35 """
36 Message block with the menu sent on daily basis.
37

38 Contains Open Dialog and Skip buttons.
39

40 """
41 return [
42 {
43 "type": "section",
44 "text": {
45 "type": "mrkdwn",
46 "text": "Hello, it is time report on daily standup.",
47 },
48 },
49 {
50 "type": "actions",
51 "elements": [
52 {
53 "type": "button",
54 "text": {
55 "type": "plain_text",
56 "emoji": True,
57 "text": "Open Report",
58 },
59 "style": "primary",
60 "value": report_id,
61 "action_id": "standup.action.open_dialog",
62 },
63 {
64 "type": "button",
65 "text": {"type": "plain_text", "emoji": True, "text": "Skip today

→˓"},
66 "action_id": "standup.action.skip_today",
67 },
68],
69 },
70]

Above we have generated 2 blocks with types section and actions. We have given a specific action_id to

15

PyconCZ 2019 Serverless Slack bot

each element in order to recognize which button was clicked by user. Processing of actions is further explained in the
next section.

We can now test this part of our code and invoke our function locally with command: sls invoke local -f
scheduled-events --path example-data/cwe-questions.json.

Make sure you are running this command from within same directory where serverless.yml is
located. (sls_app)

If the invocation was successful, you should receive a private message from your application which looks similar to
what you can see in a picture below.

16 Chapter 6. Sending questions

CHAPTER 7

Flask app - processing Slack requests

Now that we can send the menu to the user, we are going to learn how to store the data. Slack communicates with our
app via interactive actions (actions, dialogs, message buttons, or message menus) via HTTP POST to URL we set in
slack application settings.

But first let’s write some code.

7.1 Flask app

We are going to write our code inside standup_bot/action_app.py

It will be a simple application POST processing requests via API Gateway triggering slack-responses Lambda
function.

Listing 1: serverless.yml

21 functions:
22 # Lambda function with Flask application to handle Slack communication
23 slack-responses:
24 handler: wsgi_handler.handler
25 events:
26 - http:
27 path: actions
28 method: post

To serve the flask app from within AWS Lambda we are going to use serverless-wsgi plugin. (Plugin is able to
install itself, but you can do it as well: sls plugin install -n serverless-wsgi)

Listing 2: serverless.yml

55 plugins:
56 - serverless-python-requirements
57 - serverless-pseudo-parameters
58 - serverless-wsgi

17

https://api.slack.com/interactive-messages

PyconCZ 2019 Serverless Slack bot

Our application will deal with multiple structures which you can look at inside the folder example-data

1. Requests from slack are sent to API Gateway, which triggers our function and passes event similar to what
you can see inside example-data/apigw-block_action.json

2. Then serverless-wsgi and Flask transforms this event into Flask Request

3. We parse the request body and determine the request type: block_actions or dialog_submission

Let’s break down the standup_bot/action_app.py file.

1 """
2 Main flask app file used to receive incoming http requests from Slack.
3 """
4 import logging
5 from urllib import parse
6

7 from flask import Flask, request, json, make_response
8 from slack import WebClient
9

10 from standup_bot.config import QUESTIONS, SLACK_TOKEN
11 from standup_bot.models import Report
12 from standup_bot.msg_templates import dialog_questions

• We are going to need urllib.parse to help us with url decoding.

• Then we import Flask items we are going to need

• And Slack web client from python-slackclient

• Next set of imports comes from our cookiecutter template

– QUESTIONS - is a dict of questions we are going to ask. { "question1" : "Question
text?" }

– SLACK_TOKEN - so we can respond back to the user

– dialog_questions - is a Slack dialog containing QUESTIONS We simply iteratively build
elements and so our result dialog looks similar to this

1 {
2 "callback_id": "standup.action.answers",
3 "elements": [
4 {
5 "hint": "What did you work on yesterday?",
6 "label": "What did you work on yesterday?",
7 "name": "question0",
8 "optional": true,
9 "placeholder": "What did you work on yesterday?",

10 "type": "textarea"
11 },
12 {
13 "hint": "What is your plan for today?",
14 "label": "What is your plan for today?",
15 "name": "question1",
16 "optional": true,
17 "placeholder": "What is your plan for today?",
18 "type": "textarea"
19 },
20 {
21 "hint": "Any impediments?",

(continues on next page)

18 Chapter 7. Flask app - processing Slack requests

http://flask.pocoo.org/docs/1.0/api/?highlight=request#flask.request
https://github.com/slackapi/python-slackclient
https://api.slack.com/dialogs

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

22 "label": "Any impediments?",
23 "name": "question2",
24 "optional": true,
25 "placeholder": "Any impediments?",
26 "type": "textarea"
27 }
28],
29 "state": "{\"container\": {\"channel_id\": \"DFK2PDRPT\", \"is_

→˓ephemeral\": false, \"message_ts\": \"1558433489.000600\", \"type\
→˓": \"message\"}, \"report_id\": \"19700101\"}",

30 "title": "Daily standup questions."
31 }

– Report - is our DynamoDB database model created with pynamodb package. It is possi-
ble to access DynamoDB directly via boto3 however pynamodb friendlier API.

1 """Dynamo db models."""
2

3 from pynamodb.attributes import MapAttribute, UnicodeAttribute
4 from pynamodb.models import Model
5

6 from standup_bot.config import TABLE_NAME, AWS_REGION
7

8

9 class Report(Model):
10 """
11 Standup report model.
12 """
13

14 class Meta:
15 table_name = TABLE_NAME
16 region = AWS_REGION
17

18 report_id = UnicodeAttribute(hash_key=True)
19 report_user_id = UnicodeAttribute(range_key=True)
20 user_id = UnicodeAttribute()
21 user_name = UnicodeAttribute()
22 display_name = UnicodeAttribute()
23 icon_url = UnicodeAttribute()
24 answers = MapAttribute()

In our next step, we initialize our SlackClient (SC) and Flask app. When a Slack user use an interactive (click button,
submit dialog) we configure our Slack application to send a HTTP POST request to our AWS API Gateway URL
<APIGWID>.execute-api.<AWS-region>.amazonaws.com/actions. And define a route endpoint /
actions.

14 # synchronous slack client
15 SC = WebClient(SLACK_TOKEN)
16

17 app = Flask(__name__)
18 app.config["SECRET_KEY"] = "you-will-never-guess"
19 app.logger.setLevel(logging.INFO)
20

21

22 @app.route("/actions", methods=["POST"])
23 def actions():

(continues on next page)

7.1. Flask app 19

https://docs.aws.amazon.com/dynamodb/index.html
https://github.com/pynamodb/PynamoDB
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html?id=docs_gateway

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

24 """
25 Endpoint /actions to process actions and dialogs.
26

27 This method receives a request from API gateway.
28 Example request: example-data/apigw-block_action.json
29

30 We need to decode body and decide if requests is one of:
31 - block_actions -> will trigger process_block_actions()
32 - dialog_submission -> will trigger process_dialogs()
33

34 Returns
35 -------
36 flask.Response
37

38 """
39

Inside function actions we are going to perform following operations:

1. Parse and unquote request body received from AWS API Gateway.

• Received request is a URL encoded string which contains a prefix payload.

See line 119 inside a file example-data/apigw-block_action.json.

"body":"payload=%7B%22type%22%3A%22block_actions%22%2C%22team%...

• To find out how does the parsed action body looks like check file: sls_app/example-data/
block_action.json

2. Determine Slack action type block_actions or dialog_submission

3. Process the action

4. Respond back to Slack (user)

22 @app.route("/actions", methods=["POST"])
23 def actions():
24 """
25 Endpoint /actions to process actions and dialogs.
26

27 This method receives a request from API gateway.
28 Example request: example-data/apigw-block_action.json
29

30 We need to decode body and decide if requests is one of:
31 - block_actions -> will trigger process_block_actions()
32 - dialog_submission -> will trigger process_dialogs()
33

34 Returns
35 -------
36 flask.Response
37

38 """
39

40 prefix = "payload="
41 data = request.get_data(as_text=True)[len(prefix):]
42 app.logger.info("req_data %s", data)
43 # app.logger.info("dd %s", data[len(prefix):])
44

(continues on next page)

20 Chapter 7. Flask app - processing Slack requests

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

45 # action body
46 slack_req_body = json.loads(parse.unquote_plus(data))
47 app.logger.info("Action body: %s", slack_req_body)
48

49 slack_req_type = slack_req_body.get("type")
50

51 action = {"block_actions": process_block_actions, "dialog_submission": process_
→˓dialogs}

52

53 response = action[slack_req_type](slack_req_body)
54 app.logger.info("Response to Action: %s : %s", response, response.get_data())
55 return response

Now we need to write appropriate functions to process our action types.

Our first function will be process_block_actions which triggered when user clicks on a button from the menu.
Button triggers a Slack block action.

We will need to create simple logic inside our function process_block_actions, to process each action type
correctly. So far we will deal with 2 types:

• standup.action.open_dialog - When clicked on Open Dialog button

• standup.action.skip_today - The idea is to signal that user decided to skip today’s meeting. Imple-
mentation of this is left for you as a challenge.

Following example is a JSON (dict) data structure we get after successful parsing of slack_request in previous
method actions().

Message itself contains a lot of data, however we will focus on highlighted parts.

• L15 container - contains data we are going to need to uniquely identify the Slack dialog we create later

• L21 trigger_id - is required to trigger the correct dialog

• L26 message - contains original message with the menu

• L72 actions - contains result value of user’s action (click Open Dialog button)

Listing 3: example-data/block_action.json

1 {
2 "type": "block_actions",
3 "team": {
4 "id": "TFE4ZTB3L",
5 "domain": "jendaworkspace"
6 },
7 "user": {
8 "id": "UFE4ZTC8J",
9 "username": "1oglop1",

10 "name": "1oglop1",
11 "team_id": "TFE4ZTB3L"
12 },
13 "api_app_id": "AFM36S3CN",

(continues on next page)

7.1. Flask app 21

https://api.slack.com/reference/messaging/blocks#actions

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

14 "token": "uJLNkNPcUwaEzPceiCEFb9wC",
15 "container": {
16 "type": "message",
17 "message_ts": "1555663294.000200",
18 "channel_id": "DFK2PDRPT",
19 "is_ephemeral": false
20 },
21 "trigger_id": "601888012770.524169929122.23393cd981d2028028794396a1e104bf",
22 "channel": {
23 "id": "DFK2PDRPT",
24 "name": "directmessage"
25 },
26 "message": {
27 "type": "message",
28 "subtype": "bot_message",
29 "text": "Daily menu",
30 "ts": "1555663294.000200",
31 "username": "jan-standup-bot",
32 "bot_id": "BFLN2CMST",
33 "blocks": [
34 {
35 "type": "section",
36 "block_id": "dgz+G",
37 "text": {
38 "type": "mrkdwn",
39 "text": "Hello, it is time report on daily standup.",
40 "verbatim": false
41 }
42 },
43 {
44 "type": "actions",
45 "block_id": "act",
46 "elements": [
47 {
48 "type": "button",
49 "action_id": "standup.action.open_dialog",
50 "text": {
51 "type": "plain_text",
52 "text": "Open Report",
53 "emoji": true
54 },
55 "style": "primary",
56 "value": "19700101"
57 },
58 {
59 "type": "button",
60 "action_id": "standup.action.skip_today",
61 "text": {
62 "type": "plain_text",
63 "text": "Skip today",
64 "emoji": true
65 }
66 }
67]
68 }
69]
70 },

(continues on next page)

22 Chapter 7. Flask app - processing Slack requests

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

71 "response_url": "https://hooks.slack.com/actions/TFE4ZTB3L/606986906385/
→˓Fc2QQKdICRgBSKiWXVBAS5Qp",

72 "actions": [
73 {
74 "action_id": "standup.action.open_dialog",
75 "block_id": "act",
76 "text": {
77 "type": "plain_text",
78 "text": "Open Report",
79 "emoji": true
80 },
81 "value": "19700101",
82 "type": "button",
83 "style": "primary",
84 "action_ts": "1555663307.531487"
85 }
86]
87 }

With the information above we can proceed with implementation of process_block_actions.

The logic is following:

1. Take the 1st action value from actions array

2. Create a state_data to match the dialog with a user.

3. Determine the action type

4. Fill dialog object with questions and other data

5. Send a request back to Slack to open a dialog

6. And respond 200 and empty body if successful

58 def process_block_actions(slack_request: dict):
59 """
60 Slack Action processor.
61

62 Here we are going to process decoded slack request "block actions"
63 https://api.slack.com/reference/messaging/blocks#actions
64

65 Example request: example-data/block_action.json
66

67 We will present user with 2 buttons.
68 1. Open dialog - which contains standup questions
69 2. Skip today - to let user pass the meeting
70

71 Returns
72 -------
73 flask.Response
74 Empty response 200 signifies success.
75

76 """
77 action = slack_request["actions"][0]
78 state_data = {"container": slack_request["container"], "report_id": action["value

→˓"]}
79 if action["action_id"] == "standup.action.open_dialog":
80 questions = dialog_questions(json.dumps(state_data), QUESTIONS)

(continues on next page)

7.1. Flask app 23

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

81

82 app.logger.info(questions)
83

84 slack_response = SC.dialog_open(
85 dialog=questions, trigger_id=slack_request["trigger_id"]
86)
87 app.logger.info("Dialog Open: %s", slack_response)
88 return make_response()
89

90 if action["action_id"] == "standup.action.skip_today":
91 # you can try to implement this yourself
92 pass
93

94 return make_response("Unable to process action", 400)

If impatient and would like to try out your partially implemented app, go ahead to second slack setup and deployment
then come back!

Okay, we have successfully showed dialog to the user, now it’s time to collect the data.

When user submits the dialog Slack sends a HTTP POST request to our endpoint /actions. But this time the
slack_req_type type is dialog_submission.

Dialog submission message contains data about the user and values for the answers.

Note that questions are only represented with IDs question1, . . .

The important part is a callback_id field which helps us to identify dialog type. We then use the data previously
stored in state to identify the user.

Listing 4: example-data/block_action.json

1 {
2 "type": "dialog_submission",
3 "token": "uJLNkNPcUwaEzPceiCEFb9wC",
4 "action_ts": "1558430192.474181",
5 "team": {
6 "id": "TFE4ZTB3L",
7 "domain": "jendaworkspace"
8 },
9 "user": {

10 "id": "UFE4ZTC8J",
11 "name": "1oglop1"
12 },
13 "channel": {
14 "id": "DFK2PDRPT",
15 "name": "directmessage"
16 },
17 "submission": {
18 "question0": "2",
19 "question1": "2",
20 "question2": "2"
21 },
22 "callback_id": "standup.action.answers",
23 "response_url": "https://hooks.slack.com/app/TFE4ZTB3L/641451583301/

→˓S10UQ9nERHjT2EbfxZNFgS7F",
24 "state": "{\"container\": {\"channel_id\": \"DFK2PDRPT\", \"is_ephemeral\": false, \

→˓"message_ts\": \"1558430180.000400\", \"type\": \"message\"}, \"report_id\": \
→˓"19700101\"}" (continues on next page)

24 Chapter 7. Flask app - processing Slack requests

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

25 }

Slack does not have implemented automated updates(answers) to actions. This means when user submits the dialog,
the menu stays unchanged.

But we would like to inform the user about successful submission therefore we will do the trick and update the previous
message using the timestamp to following:

For this purpose we are going to implement a function process_dialogs as follows:

1. Examine callback_id to identify dialog type

2. Parse the state_data from string to dict

3. Get detailed information about the user from Slack

4. Create a report object represented by our database model Report

• To uniquely identify the report for simple a simple query, our main identifier will be report_id. It’s a
simple execution timestamp, which comes from a scheduled event, converted into YYYYMMDD string with
suffix of a slack user ID UFE4ZTC8J (assuming our meeting is once a day).

Example

time: 2016-12-30T18:44:49Z
user_id: UFE4ZTC8J

becomes:

20161230_UFE4ZTC8J

This way we can later query the database for a given day to get all reports.

5. Save data in the database

6. Inform user via updating a chat message.

7. Send empty response 200

97 def process_dialogs(slack_dialog: dict):
98 """
99 Process Slack dialogs.

100

101 Here we are going to collect data from dialog
102

103 example dialog submission: example-data/dialog_submission.json
104

105 Returns
106 -------
107 flask.Response

(continues on next page)

7.1. Flask app 25

PyconCZ 2019 Serverless Slack bot

(continued from previous page)

108 Successful dialog submission requires empty response 200.
109

110 """
111

112 if slack_dialog["callback_id"] == "standup.action.answers":
113 # add one field to answers
114 state_data = json.loads(slack_dialog["state"])
115 # prepare DB record
116

117 # get more user data
118 user_info = SC.users_info(
119 user=slack_dialog["user"]["id"]
120)
121

122 app.logger.info("UserInfo: %s", user_info)
123

124 display_name = (
125 user_info["user"]["profile"]["display_name"]
126 or user_info["user"]["profile"]["real_name"]
127 or slack_dialog["user"]["name"]
128)
129

130 user_report = Report(
131 state_data["report_id"],
132 f'{state_data["report_id"]}_{slack_dialog["user"]["id"]}',
133 user_name=slack_dialog["user"]["name"],
134 user_id=slack_dialog["user"]["id"],
135 answers=slack_dialog["submission"],
136 display_name=display_name,
137 icon_url=user_info["user"]["profile"]["image_48"],
138)
139 # Write to database.
140 user_report.save()
141 # Respond to user
142 SC.chat_update(
143 channel=state_data["container"]["channel_id"],
144 ts=state_data["container"]["message_ts"],
145 text="Thank you for your submission.",
146 blocks=[],
147 as_user=True, # reason specified in slack docs
148)
149

150 app.logger.info("Adding new answer: %s", user_report._get_json())
151 return make_response()
152

153 return make_response("Unable to process dialog", 400)

This concludes 2/3 of our application, you can now try to deploy and play around. To deploy check out the second
slack setup and deployment page!

If you are not deploying or you have finished the investigation, please proceed to the last part sending the report from
all users

26 Chapter 7. Flask app - processing Slack requests

CHAPTER 8

Meeting Report

Last step of our application is to report all collected data back to the SLACK_CHANNEL

This is going to be again the scheduled event but this time called send_report. We will schedule this event after
send_questions and give users enough time to respond (30m ~ 2h).

Implementation will take place again inside standup_bot/scheduled.py file.

Where we are going to write 3 functions in a style that is easy to convert into asynchronous code.

• one_report - Send report of 1 user to the SLACK_CHANNEL

• all_reports - Iterate through all reports collected that day and send them to the SLACK_CHANNEL

• send_report - Our entry point function, which starts the whole orchestra.

8.1 Sending one report

In this case we assume we already have our report object available. And all we need to do is to send a request to
the Slack and return response.

53 def one_report(report):
54 """Show report of one user."""
55 user_id = report.user_id
56

57 response = SC.chat_postMessage(
58 channel=SLACK_CHANNEL,
59 username=report.display_name,
60 icon_url=report.icon_url,
61 text=f"*{report.display_name}* posted and update for stand up meeting.",
62 blocks=report_block(QUESTIONS, report.answers)
63)
64

65 return user_id, response

27

PyconCZ 2019 Serverless Slack bot

8.2 All reports

In method all_reports we are going to query for all reports from a given day and apply one_report on each.

68 def all_reports(report_id):
69 """Show reports of all users."""
70 reports = Report.query(report_id, Report.report_user_id.startswith(report_id))
71

72 SC.chat_postMessage(
73 channel=SLACK_CHANNEL,
74 text=f"Here are the standup results from *{dt.datetime.strptime(report_id, '%Y

→˓%m%d')}*.",
75)
76 for report in reports:
77 yield one_report(report)

Using a generator is very similar to asynchronous programming in Python. So if you are interested into async python
but not yet familiar with generators, I strongly suggest to start there.

8.3 Send report

Now we have everything ready and all we need to do is to call function all_reports.

80 def send_report(report_id):
81 """Entry point for sending reports."""
82 results = list(all_reports(report_id))
83 LOGGER.info("Sent report log: %s", results)

Now we can let lambda_handler decide what is the appropriate entry point (send_report or
send_questions)

Note that explanation of sending report and question took a bottom up approach. Where we first im-
plemented a single (atomic) operation and in next steps we simply run this in a loop. You can use this
approach in asynchronous version of this application and run all_reports at the same time, instead
iterating through each.

28 Chapter 8. Meeting Report

https://realpython.com/introduction-to-python-generators/

CHAPTER 9

Final deployment

To deploy our app we need to go through few steps:

1. cd sls_app (you should be already there)

2. sls deploy - this will deploy our app to AWS and output API Gateway endpoint

3. Enable Slack Interactive Components

9.1 Enabling Slack Interactive Components

1. Navigate to https://api.slack.com/apps

2. Click on your application

3. Features -> Interactive Components

4. Set interactive components to On

5. Fill in the endpoint URL

29

https://api.slack.com/apps

PyconCZ 2019 Serverless Slack bot

6. Hit the Save Changes button

9.2 Local invocation

Because our Cloud Watch events are disabled to prevent unwanted executions before the production/test stage.

30 scheduled-events:
31 handler: standup_bot/scheduled.lambda_handler
32 events:
33 - schedule:
34 description: 'Send questions'
35 # rate: cron(0 8 ? * MON-FRI *) # Mo-Fri 8:00
36 rate: rate(5 minutes) # For testing
37 enabled: false
38 inputTransformer:
39 inputPathsMap:
40 eventTime: "$.time"
41 source: "$.source"
42 inputTemplate: '{"source": <source>,"time": <eventTime>,"type": "send_

→˓questions"}'
43 - schedule:
44 description: 'Send report.'
45 # rate: cron(0 10 ? * MON-FRI *) # Mo-Fri 10:00
46 rate: rate(5 minutes) # For testing
47 enabled: false
48 inputTransformer:
49 inputPathsMap:
50 eventTime: "$.time"
51 source: "$.source"
52 inputTemplate: '{"source": <source>,"time": <eventTime>,"type": "send_

→˓report"}'

You may have noticed that rate is set to rate which is CloudWatch scheduled event expression and this is also not
correct for production, however it’s a good way to observe behaviour triggered by AWS.

For now we invoke our scheduled functions locally and manually via serverless framework commands.

To send_questions run

sls invoke local -f scheduled-events --path example-data/cwe-questions.json

Then take some time to collect the data and once you are ready. Trigger send_report using the command

30 Chapter 9. Final deployment

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

PyconCZ 2019 Serverless Slack bot

sls invoke local -f scheduled-events --path example-data/cwe-report.json

9.2. Local invocation 31

PyconCZ 2019 Serverless Slack bot

32 Chapter 9. Final deployment

CHAPTER 10

AWS CloudWatch

10.1 CloudWatch Logs

10.2 CloudWatch Events

33

PyconCZ 2019 Serverless Slack bot

34 Chapter 10. AWS CloudWatch

CHAPTER 11

AWS Lambda

AWS Lambda is a function as a service in AWS Cloud, we will cover only necessary parts but you can always refer to
the official documentation.

We are going to use these terms throughout the guide: Function, Runtime, Event source and Log
streams. Please make yourself familiar with basic concepts of AWS Lambda.

11.1 Function as a service (FAAS)

With FAAS you only need to provide your code and select the runtime (interpreter). We are going to use python3.7
runtime.

AWS Lambda can either be a simple python file or entire module. We need to specify a handler to tell lambda
where to execute our code.

More details about python in AWS Lambda

11.2 Handler

Handler is usually a function lambda_handler which accepts 2 arguments.

Name of handler function can be anything, you just need to point the handler to the function, which
accepts 2 arguments.

def lambda_handler(event, context):
pass

event - Contains data from Event Source usually a Python dict type. It can also be list, str, int, float, or NoneType
type. context – Contains runtime information to your handler. This parameter is of the LambdaContext type.

If needed visit more detailed handler documentation

35

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-application-fundamentals.html
https://docs.aws.amazon.com/lambda/latest/dg/python-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/python-programming-model-handler-types.html

PyconCZ 2019 Serverless Slack bot

11.3 Technical details

AWS Lambda function is a amazon linux container running python interpreter.

First invocation of your lambda function starts the whole container, which loads all your code into memory and
executes lambda_handler. Then container stays idle for some time until amazon reclaim it’s resources. During
the idle time, your code stays loaded and only lambda_handler is executed. This behaviour cold and hot start of
AWS Lambda function.

Cold - invocation starts new container and executes lambda_handler Hot - invocation executes
lambda_handler only Check this article for more information about lambda container lifetime.

You can use this feature to preserve open sessions by declaring them outside lambda_handler.

One example for thousands words.

Listing 1: session_not_reused.py

import boto3

def lambda_handler(event, context):
session = boto3.Session()
client = session.client('iam')
client.get_user(UserName=event['iam_username'])

In this example the session object is created every time our lambda is called, which can lead to api throttling or
different side effects.

We can fix this by declaring our session outside lambda_handler therefore it will be created only when lambda
function is invoked from a cold state.

Listing 2: session_reused.py

import boto3

session = boto3.Session()
client = session.client('iam')

def lambda_handler(event, context):
client.get_user(UserName=event['iam_username'])

36 Chapter 11. AWS Lambda

https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810

CHAPTER 12

How to set environment variables

12.1 Mac/Linux (Bash)

export AWS_ACCESS_KEY_ID=<your key ID>
export AWS_SECRET_ACCESS_KEY=<your secret key>
export AWS_REGION=us-east-1
export AWS_DEFAULT_REGION=us-east-1
export SLACK_TOKEN=<your BOT token>
export SLACK_CHANNEL="<your slack channel ID>"

12.2 Windows

Powershell

$env:AWS_ACCESS_KEY_ID = "<your key ID>"
$env:AWS_SECRET_ACCESS_KEY = "<your secret key>"
$env:AWS_REGION = "us-east-1"
$env:AWS_DEFAULT_REGION = "us-east-1"
$env:SLACK_TOKEN = "<your BOT token>"
$env:SLACK_CHANNEL = "<your slack channel ID>"

Git-bash

export AWS_ACCESS_KEY_ID=<your key ID>
export AWS_SECRET_ACCESS_KEY=<your secret key>
export AWS_REGION=us-east-1
export AWS_DEFAULT_REGION=us-east-1
export SLACK_TOKEN=<your BOT token>
export SLACK_CHANNEL="<your slack channel ID>"

CMD (not recommended)

37

PyconCZ 2019 Serverless Slack bot

setx AWS_ACCESS_KEY_ID "<your key ID>"
setx AWS_SECRET_ACCESS_KEY "<your secret key>"
setx AWS_REGION "us-east-1"
setx AWS_DEFAULT_REGION "us-east-1"
setx SLACK_TOKEN "<your BOT token>"
setx SLACK_CHANNEL "<your slack channel ID>"

38 Chapter 12. How to set environment variables

CHAPTER 13

Iam Role

Workshop apps hosted inside our environment are protected via managed policy. If you are going through this in your
own environment, please use following service role for lambdas.

1 provider:
2 # Lambda function's IAM Role
3 iamRoleStatements:
4 - Effect: Allow
5 Action:
6 # Allow lambda to create network interface in vpc
7 - ec2:CreateNetworkInterface
8 - ec2:DeleteNetworkInterface
9 - ec2:DescribeNetworkInterfaces

10 # Allow lambda to write logs
11 - logs:CreateLogGroup
12 - logs:CreateLogStream
13 - logs:PutLogEvents
14 Resource:
15 - "*"
16 - Effect: Allow
17 Sid: AllowDynamoDBAccess
18 Action:
19 - dynamodb:Query
20 - dynamodb:Scan
21 - dynamodb:GetItem
22 - dynamodb:PutItem
23 - dynamodb:UpdateItem
24 - dynamodb:DeleteItem
25 - dynamodb:DescribeTable
26 Resource: "arn:aws:dynamodb:${opt:region, self:provider.region}:*:table/$

→˓{self:provider.environment.DYNAMODB_TABLE}"

Remove the section provider.iamManagedPolicies from our original serverless.yaml and insert
iamRoleStatements section from above.

39

	Project overview
	Basic setup
	Slack setup
	Slack app

	Serverless.js
	serverless.yml

	Slack messages
	Sending questions
	Flask app - processing Slack requests
	Flask app

	Meeting Report
	Sending one report
	All reports
	Send report

	Final deployment
	Enabling Slack Interactive Components
	Local invocation

	AWS CloudWatch
	CloudWatch Logs
	CloudWatch Events

	AWS Lambda
	Function as a service (FAAS)
	Handler
	Technical details

	How to set environment variables
	Mac/Linux (Bash)
	Windows

	Iam Role

